\(\int \frac {\sin ^2(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [159]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 153 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\cos (e+f x) \sin (e+f x)}{(a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {E\left (e+f x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(e+f x)}}{b (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{b f \sqrt {a+b \sin ^2(e+f x)}} \]

[Out]

-cos(f*x+e)*sin(f*x+e)/(a+b)/f/(a+b*sin(f*x+e)^2)^(1/2)-(cos(f*x+e)^2)^(1/2)/cos(f*x+e)*EllipticE(sin(f*x+e),(
-b/a)^(1/2))*(a+b*sin(f*x+e)^2)^(1/2)/b/(a+b)/f/(1+b*sin(f*x+e)^2/a)^(1/2)+(cos(f*x+e)^2)^(1/2)/cos(f*x+e)*Ell
ipticF(sin(f*x+e),(-b/a)^(1/2))*(1+b*sin(f*x+e)^2/a)^(1/2)/b/f/(a+b*sin(f*x+e)^2)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3252, 3251, 3257, 3256, 3262, 3261} \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\sin (e+f x) \cos (e+f x)}{f (a+b) \sqrt {a+b \sin ^2(e+f x)}}+\frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )}{b f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\sqrt {a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{b f (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}} \]

[In]

Int[Sin[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

-((Cos[e + f*x]*Sin[e + f*x])/((a + b)*f*Sqrt[a + b*Sin[e + f*x]^2])) - (EllipticE[e + f*x, -(b/a)]*Sqrt[a + b
*Sin[e + f*x]^2])/(b*(a + b)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) + (EllipticF[e + f*x, -(b/a)]*Sqrt[1 + (b*Sin[e
 + f*x]^2)/a])/(b*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 3251

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[
B/b, Int[Sqrt[a + b*Sin[e + f*x]^2], x], x] + Dist[(A*b - a*B)/b, Int[1/Sqrt[a + b*Sin[e + f*x]^2], x], x] /;
FreeQ[{a, b, e, f, A, B}, x]

Rule 3252

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[(-(A*b - a*B))*Cos[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x]^2)^(p + 1)/(2*a*f*(a + b)*(p + 1))), x] - Dist[
1/(2*a*(a + b)*(p + 1)), Int[(a + b*Sin[e + f*x]^2)^(p + 1)*Simp[a*B - A*(2*a*(p + 1) + b*(2*p + 3)) + 2*(A*b
- a*B)*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && LtQ[p, -1] && NeQ[a + b, 0]

Rule 3256

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(Sqrt[a]/f)*EllipticE[e + f*x, -b/a], x] /
; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]

Rule 3257

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[1 + b*(Sin
[e + f*x]^2/a)], Int[Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]

Rule 3261

Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(1/(Sqrt[a]*f))*EllipticF[e + f*x, -b/a]
, x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]

Rule 3262

Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[Sqrt[1 + b*(Sin[e + f*x]^2/a)]/Sqrt[a +
b*Sin[e + f*x]^2], Int[1/Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos (e+f x) \sin (e+f x)}{(a+b) f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\int \frac {a-a \sin ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx}{a (a+b)} \\ & = -\frac {\cos (e+f x) \sin (e+f x)}{(a+b) f \sqrt {a+b \sin ^2(e+f x)}}+\frac {\int \frac {1}{\sqrt {a+b \sin ^2(e+f x)}} \, dx}{b}-\frac {\int \sqrt {a+b \sin ^2(e+f x)} \, dx}{b (a+b)} \\ & = -\frac {\cos (e+f x) \sin (e+f x)}{(a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\sqrt {a+b \sin ^2(e+f x)} \int \sqrt {1+\frac {b \sin ^2(e+f x)}{a}} \, dx}{b (a+b) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\sqrt {1+\frac {b \sin ^2(e+f x)}{a}} \int \frac {1}{\sqrt {1+\frac {b \sin ^2(e+f x)}{a}}} \, dx}{b \sqrt {a+b \sin ^2(e+f x)}} \\ & = -\frac {\cos (e+f x) \sin (e+f x)}{(a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {E\left (e+f x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(e+f x)}}{b (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{b f \sqrt {a+b \sin ^2(e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.90 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {-\sqrt {2} a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+\sqrt {2} (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )-b \sin (2 (e+f x))}{\sqrt {2} b (a+b) f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

[In]

Integrate[Sin[e + f*x]^2/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(-(Sqrt[2]*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)]) + Sqrt[2]*(a + b)*Sqrt[(2*a +
b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] - b*Sin[2*(e + f*x)])/(Sqrt[2]*b*(a + b)*f*Sqrt[2*a + b
- b*Cos[2*(e + f*x)]])

Maple [A] (verified)

Time = 1.71 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.25

method result size
default \(\frac {a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )+\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )+\left (\sin ^{3}\left (f x +e \right )\right ) b -b \sin \left (f x +e \right )}{b \left (a +b \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(191\)

[In]

int(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))+(cos(f*x+e)^2)^(1/2)
*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2
)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))+sin(f*x+e)^3*b-b*sin(f*x+e))/b/(a+b)/cos(f*x+e)/(a+b*sin(f*x+e
)^2)^(1/2)/f

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 780, normalized size of antiderivative = 5.10 \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} b^{2} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, {\left ({\left (-2 i \, a b - i \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 i \, a^{2} + 3 i \, a b + i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) - 2 \, {\left ({\left (2 i \, a b + i \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 2 i \, a^{2} - 3 i \, a b - i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (2 \, {\left (-i \, b^{2} \cos \left (f x + e\right )^{2} + i \, a b + i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {a^{2} + a b}{b^{2}}} - {\left ({\left (2 i \, a b + i \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 2 i \, a^{2} - 3 i \, a b - i \, b^{2}\right )} \sqrt {-b}\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (2 \, {\left (i \, b^{2} \cos \left (f x + e\right )^{2} - i \, a b - i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {a^{2} + a b}{b^{2}}} - {\left ({\left (-2 i \, a b - i \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 i \, a^{2} + 3 i \, a b + i \, b^{2}\right )} \sqrt {-b}\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}})}{2 \, {\left ({\left (a b^{3} + b^{4}\right )} f \cos \left (f x + e\right )^{2} - {\left (a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right )} f\right )}} \]

[In]

integrate(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

1/2*(2*sqrt(-b*cos(f*x + e)^2 + a + b)*b^2*cos(f*x + e)*sin(f*x + e) - 2*((-2*I*a*b - I*b^2)*cos(f*x + e)^2 +
2*I*a^2 + 3*I*a*b + I*b^2)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*
sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*s
qrt((a^2 + a*b)/b^2))/b^2) - 2*((2*I*a*b + I*b^2)*cos(f*x + e)^2 - 2*I*a^2 - 3*I*a*b - I*b^2)*sqrt(-b)*sqrt((2
*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*
x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + (2*(-I*b^2*cos
(f*x + e)^2 + I*a*b + I*b^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2) - ((2*I*a*b + I*b^2)*cos(f*x + e)^2 - 2*I*a^2 - 3*
I*a*b - I*b^2)*sqrt(-b))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 +
 a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 +
a*b)/b^2))/b^2) + (2*(I*b^2*cos(f*x + e)^2 - I*a*b - I*b^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2) - ((-2*I*a*b - I*b^
2)*cos(f*x + e)^2 + 2*I*a^2 + 3*I*a*b + I*b^2)*sqrt(-b))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*ellipti
c_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^
2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2))/((a*b^3 + b^4)*f*cos(f*x + e)^2 - (a^2*b^2 + 2*a*b^3 + b^4)*f
)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)**2/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^2/(b*sin(f*x + e)^2 + a)^(3/2), x)

Giac [F]

\[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sin(f*x+e)^2/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^2}{{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

[In]

int(sin(e + f*x)^2/(a + b*sin(e + f*x)^2)^(3/2),x)

[Out]

int(sin(e + f*x)^2/(a + b*sin(e + f*x)^2)^(3/2), x)